Users:General FEM Analysis/Materials Reference/CMatBonetBurton
From Carat++ Public Wiki
(Difference between revisions)
(Created page with "== Input Parameters Bonet Burton == This is a transverse isotropic material model. === Parameter Description === {| border="1" cellpadding="3" cellspacing="0" |colspan="3" sty...") |
|||
Line 15: | Line 15: | ||
|EL-MATERIAL ''int'': BONET_BURTON | |EL-MATERIAL ''int'': BONET_BURTON | ||
|Definition of material number. | |Definition of material number. | ||
+ | |- | ||
+ | !TYPE | ||
+ | |NeoHookean or StVenantKirchhoff. | ||
+ | | --- | ||
|- | |- | ||
!THETA_FIBER | !THETA_FIBER | ||
Line 55: | Line 59: | ||
=== References === | === References === | ||
+ | |||
+ | 1. A. Widhammer. Variation of Reference Strategy – Generation of Optimized Cutting Patterns for Textile Fabrics, PhD-Thesis TU München, 2015 | ||
+ | 2. J. Bonet and A.J. Burton. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp. Methods Appl. Mech. Engrg., 162:151{164, 1998. |
Revision as of 15:24, 5 December 2016
Contents |
Input Parameters Bonet Burton
This is a transverse isotropic material model.
Parameter Description
Compulsory Parameters | ||
Parameter | Values, Default(*) | Description |
---|---|---|
MATERIAL | EL-MATERIAL int: BONET_BURTON | Definition of material number. |
TYPE | NeoHookean or StVenantKirchhoff. | --- |
THETA_FIBER | reals | Definition of fiber orientation. |
E_MOD | reals | Definition of Young's modulus. |
E_MOD_FIBER | reals | Definition of Young's modulus of fiber. |
E_MOD_FIBER | reals | Definition of shear modulus of fiber. |
NU | reals | Definition of Poisson's ratio. |
DENS | reals | Definition of material desnity. |
Example of a Complete Input Block
EL-MATERIAL 1 : BONET-BURTON TYPE = NeoHookean THETA_FIBER = 0.0 E_MOD = 0.30E+03 E_MOD_FIBER = 75.00E+03 G_MOD_FIBER = 0.30E+03 NU = 0.000 DENS = 7.850E-06
References
1. A. Widhammer. Variation of Reference Strategy – Generation of Optimized Cutting Patterns for Textile Fabrics, PhD-Thesis TU München, 2015 2. J. Bonet and A.J. Burton. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp. Methods Appl. Mech. Engrg., 162:151{164, 1998.
Whos here now: Members 0 Guests 0 Bots & Crawlers 1 |