Users:General FEM Analysis/Materials Reference/CMatBonetBurton

From Carat++ Public Wiki
< Users:General FEM Analysis | Materials Reference(Difference between revisions)
Jump to: navigation, search
(Created page with "== Input Parameters Bonet Burton == This is a transverse isotropic material model. === Parameter Description === {| border="1" cellpadding="3" cellspacing="0" |colspan="3" sty...")
 
 
(One intermediate revision by one user not shown)
Line 15: Line 15:
 
|EL-MATERIAL ''int'': BONET_BURTON
 
|EL-MATERIAL ''int'': BONET_BURTON
 
|Definition of material number.
 
|Definition of material number.
 +
|-
 +
!TYPE
 +
|NeoHookean or StVenantKirchhoff
 +
| ---
 
|-
 
|-
 
!THETA_FIBER
 
!THETA_FIBER
Line 55: Line 59:
  
 
=== References ===
 
=== References ===
 +
 +
1. A. Widhammer. Variation of Reference Strategy – Generation of Optimized Cutting Patterns for Textile Fabrics, PhD-Thesis TU München, 2015
 +
2. J. Bonet and A.J. Burton. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp. Methods Appl. Mech. Engrg., 162:151{164, 1998.

Latest revision as of 15:25, 5 December 2016

Contents

Input Parameters Bonet Burton

This is a transverse isotropic material model.

Parameter Description

Compulsory Parameters
Parameter Values, Default(*) Description
MATERIAL EL-MATERIAL int: BONET_BURTON Definition of material number.
TYPE NeoHookean or StVenantKirchhoff ---
THETA_FIBER reals Definition of fiber orientation.
E_MOD reals Definition of Young's modulus.
E_MOD_FIBER reals Definition of Young's modulus of fiber.
E_MOD_FIBER reals Definition of shear modulus of fiber.
NU reals Definition of Poisson's ratio.
DENS reals Definition of material desnity.

Example of a Complete Input Block

EL-MATERIAL 1 : BONET-BURTON
  TYPE = NeoHookean 
  THETA_FIBER = 0.0
  E_MOD       = 0.30E+03
  E_MOD_FIBER = 75.00E+03  
  G_MOD_FIBER = 0.30E+03
  NU = 0.000 
  DENS = 7.850E-06


References

1. A. Widhammer. Variation of Reference Strategy – Generation of Optimized Cutting Patterns for Textile Fabrics, PhD-Thesis TU München, 2015 2. J. Bonet and A.J. Burton. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp. Methods Appl. Mech. Engrg., 162:151{164, 1998.





Whos here now:   Members 0   Guests 0   Bots & Crawlers 1
 
Personal tools
Content for Developers